Abstract

Design of plasmonic substrates is of immense importance for high sensitivity and spatial resolution in plasmon-enhanced spectroscopy. In this study, the enhancement factors (EFs) of tip-enhanced coherent anti-Stokes Raman scattering (TECARS) contributed by surface and quantum coherent effects in the ultraviolet region are theoretically analyzed using three-dimensional finite-difference time-domain (3D-FDTD) method. In the multi-resonant TECARS configuration, surface and coherent EFs of 1018 and 109, respectively, can be achieved by considering the synthetic effect of surface and coherent enhancement mechanisms, providing the total TECARS EF of 1027 and sub-5 nm spatial resolution. Our theoretical results not only provide a deeper understanding of ultraviolet (UV)-TECARS but also can be used as a highly efficient reference for the experimental design of TECARS platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.