Abstract

Silicon is drawing attention as an emerging anode material for the next generation of lithium-ion batteries due to its higher capacity compared with commercial graphite. However, silicon anions formed during lithiation are highly reactive with binder and electrolyte components, creating an unstable SEI layer and limiting the calendar life of silicon anodes. The reactivity of lithium silicide and the formation of an unstable SEI layer are mitigated by utilizing a mixture of Ca and Mg multivalent cations as an electrolyte additive for Si anodes to improve their calendar life. The effect of mixed salts on the bulk and surface of the silicon anodes was studied by multiple structural characterization techniques. Ca and Mg ions in the electrolyte formed relatively thermodynamically stable quaternary Li-Ca-Mg-Si Zintl phases in an in situ fashion and a more stable and denser SEI layer on the Si particles. These in turn protect silicon particles against side reactions with electrolytes in a coin cell. The full cell with the mixed cation electrolyte demonstrates enhanced calendar life performance with lower measured current and current leakage in comparison to that of the baseline electrolyte due to reduced side reactions. Electron microscopy, HR-XRD, and solid-state NMR results showed that electrodes with mixed cations tended to have less cracking on the electrode surface, and the presence of mixed cations enhances cation migration and formation of quaternary Zintl phases stabilizing the bulk and forming a more stable SEI in comparison to baseline electrolyte and electrolyte with single multivalent cations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call