Abstract
We introduce a new class of growth models, with a surface restructuring mechanism in which impinging particles may dislodge suspended particles, previously aggregated on the same column in the deposit. The flux of these particles is controlled through a probability p. These systems present a crossover, for small values of p, from random to correlated (KPZ) growth of surface roughness, which is studied through scaling arguments and Monte Carlo simulations on one- and two-dimensional substrates. We show that the crossover characteristic time t× scales with p according to t×∼p−y with y=(n+1) and that the interface width at saturation Wsat scales as Wsat∼p−δ with δ=(n+1)/2, where n is either the maximal number of broken bonds or of dislodged suspended particles. This result shows that the sets of exponents y=1 and δ=1/2 or y=2 and δ=1 found in all previous works focusing on systems with this same type of crossover are not universal. Using scaling arguments, we show that the bulk porosity P of the deposits scales as P∼py−δ for small values of p. This general scaling relation is confirmed by our numerical simulations and explains previous results present in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.