Abstract

Ga doped boehmite nanofibres with varying Ga content have been prepared at low temperatures using hydrothermal treatment in the presence of poly (ethylene oxide) surfactant. The resulting nanofibres were characterized by X-ray diffraction (XRD), dynamic and controlled rate thermal analysis and infrared emission spectroscopy (IES), transmission electron microscopy (TEM), Energy dispersive X-ray analysis (EDX), N 2 adsorption/desorption. TEM results show that nanotubes are dominant when the doped gallium percentage is no more than 5%; nanosheets and an amorphous phase are observed in 10% and 20% gallium doped samples. N 2 adsorption/desorption analysis reveals a large amount of micropores and mesopores are present in the resultant samples. Similar to iron and yttrium doped boehmite nanomaterials, remarkable larger BET specific area was achieved compared to pure boehmite nanomaterials. Both dynamic and controlled thermal analyses show that the gallium doped boehmite nanomaterials dehydrate at higher temperature than that of pure boehmite. Interestingly, the higher the crystallinity of the resultant nanotubes is, the higher the dehydration temperature. The IES spectra show that dehydroxylation of the resultant gallium doped boehmite nanomaterials starts at 250 °C and is complete by 450 °C, in harmony with the dynamic and controlled rate thermal analysis results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.