Abstract

Asparagus roots were dried in four selected driers vacuum, fluidized bed, tray, and solar dryer at temperatures starting from 40 to 70 °C. The drying kinetics of asparagus roots was studied with the analysis of the influence of all stated drying conditions on the drying rate, dehydration ratio, rehydration characteristic, color characteristics, and energy consumption. With an increase in the temperature required for drying asparagus, there is an increasing trend of dehydration ratio (DR) and decreasing trend of drying time. The rehydration characteristics are found to be increases with a decrease in drying temperature from 70-60 °C but decrease with a further decrease in drying temperature from 60-40 °C. The energy consumption based on the drying conditions showed great thermal sensitivity and was found higher for low-temperature drying. The results of color characteristics (Chroma, hue angle, and ΔE) showed that the cream color of roots was relatively unaffected by drying. However, the brightness of roots was observed to be increased. Eleven thin-layered drying mathematical models were applied to experimental data of different drying conditions, and the model best describing its behavior was selected based on the coefficient of determination (R2), sum square error (SSE), and root mean square error (RMSE). All selected models give good fitting results (R2 > 0.96) and found the cubic model as the most suitable model for all treatments (R2 > 0.99).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.