Abstract

The composition changes in the close to surface of the austenitic stainless steel DIN 1.4981 irradiated at high doses. Theoretical simulations using the SRIM-2013 program show that the damage due to Nickel cation [Ni2+] ions irradiation of 3.66 MeV extends to up 2 μm deep in the steel under study. Then the applications of Grazing incidence X-ray Diffraction (GXRD) and X-ray Photoelectron Spectroscopy (XPS), Gallium cation [Ga3+] ions sputtering assisted, were necessary to detect respectively, any compositional changes with the depth. GXRD differences were recorded in the intensity and it's Full Width at Half Maximum (FWHM), of the austenite (111) diffraction peak, at different depths in the Irradiate Zone (IZ). Through XPS was found that Nickel [Ni], Niobium [Nb], and Manganese [Mn] were depleted it is important to highlight Chromium [Cr], and Molybdenum [Mo] were improved at the irradiated surface; such behavior was contrary to the element migration under irradiation reported for austenitic stainless steels irradiated at low doses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.