Abstract

There is no established protocol for bonding zirconia (Y-TZP) with resin cements. Non-thermal plasma (NTP) may be an alternative for the clinical problems related to adhesion. The purpose of the present study was to characterize the surface of Y-TZP exposed to methane (CH4) NTP or coated with a layer of primer for metal alloys and the association between the two methods and to evaluate the effect of NTP treatment on bond strength between Y-TZP and two resin cements. A total of 235 Y-TZP discs (8×2mm) were distributed into five groups: Co (no surface treatment), Pr (primer), NTP (methane plasma), Pr+NTP and NTP+Pr. The effect of the treatment type on the surface free energy, morphology, topography and chemical composition of the Y-TZP discs was investigated. The discs were cemented to composite resin substrates using Panavia F2.0 or RelyX U200. Shear bond strength (n=10) analyses were performed (1mm/min) before and after thermocycling (5–55°C, 2000cycles) on the bonded specimens. The data were analyzed with one and three-way ANOVAs and Bonferroni tests (α=0.05). NTP reduced the surface energy and roughness of the Y-TZP discs. SEM-EDS and XPS analyses showed the presence of the organic thin film, which significantly improved the bond strength results when Rely X U200 was used, whereas the primer treatment was more effective with Panavia F2.0. Thermocycling significantly reduced the bond strength results of the NTP and Pr+NTP groups cemented with Rely X U200 and the Pr and NTP+Pr groups cemented with Panavia F2.0. Nonthermal plasma improves the bond strength between Rely X U200 and Y-TZP and also seems to have water-resistant behavior, whereas Panavia F2.0 showed better results when associated with primer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call