Abstract

A surface alkylated and metal nano-dotted n-Si electrode yields an efficient and stable photovoltaic characteristic in an aqueous redox electrolyte. It generates a high photovoltage due to a unique effect of metal nano-contact and is stabilized by surface alkylation. In the present work, we have prepared a composite electrode, composed of the surface methylated and Pt nano-dotted n-Si single crystal electrode and a tungsten trioxide (WO<sub>3</sub>) particulate thin film, to decompose water into oxygen and H<sup>+</sup> ions under solar irradiation. The onset potential of the oxygen evolution photocurrent for the composite electrode shifts to the negative by about 0.2 V compared with that for the WO<sub>3</sub> electrode alone, indicating that the two-step, Z-scheme mechanism operates in the composite electrode, leading to generation of a high photovoltage that comes from a series sum of the photovoltage in the Si and that in the WO<sub>3</sub>. It is discussed that a composite "polycrystalline Si / visible-light responsive metal-oxide thin-film" electrode is a promising approach to high-efficiency and low-cost solar water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.