Abstract

A strategy of reaction-environment modulation was employed to change the surface property of a semiconductor photocatalyst to enhance its photocatalytic performance. Surface alkalinization induced by a high alkalinity of the solution environment significantly shifted the surface energy band of a SrTiO(3) photocatalyst to a more negative level, supplying a strong potential for H(2)O reduction and consequently promoting the photocatalytic efficiency of H(2) evolution. This mechanism is also applicable for visible-light-sensitive La,Cr-codoped SrTiO(3) photocatalyst, which hence, could achieve a high apparent quantum efficiency of 25.6% for H(2) evolution in CH(3)OH aqueous solution containing 5 M NaOH at an incident wavelength of 425 ± 12 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call