Abstract

Abstract High-latitude ocean surface air temperature and humidity derived from intersatellite-calibrated High-Resolution Infrared Radiation Sounder (HIRS) measurements are examined. A neural network approach is used to develop retrieval algorithms. HIRS simultaneous nadir overpass observations from high latitudes are used to intercalibrate observations from different satellites. Investigation shows that if HIRS observations were not intercalibrated, then it could lead to intersatellite biases of 1°C in the air temperature and 1–2 g kg−1 in the specific humidity for high-latitude ocean surface retrievals. Using a full year of measurements from a high-latitude moored buoy site as ground truth, the instantaneous (matched within a half-hour) root-mean-square (RMS) errors of HIRS retrievals are 1.50°C for air temperature and 0.86 g kg−1 for specific humidity. Compared to a large set of operational moored and drifting buoys in both northern and southern oceans greater than 50° latitude, the retrieval instantaneous RMS errors are within 2.6°C for air temperature and 1.4 g kg−1 for specific humidity. Compared to 5 yr of International Maritime Meteorological Archive in situ data, the HIRS specific humidity retrievals show less than 0.5 g kg−1 of differences over the majority of northern high-latitude open oceans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.