Abstract

We employ a hybrid diffusion- and nucleation-based kinetic Monte Carlo model to elucidate the significant impact of adatom diffusion on incipient surface dislocation nucleation in metal nanowires. We reveal a stress-regulated diffusion mechanism that promotes preferential accumulation of diffusing adatoms near nucleation sites, which explains the experimental observations of strong temperature but weak strain-rate dependence as well as temperature-dependent scatter of the nucleation strength. Furthermore, the model demonstrates that a decreasing rate of adatom diffusion with an increasing strain rate will lead to stress-controlled nucleation being the dominant nucleation mechanism at higher strain rates. Overall, our model offers new mechanistic insights into how surface adatom diffusion directly impacts the incipient defect nucleation process and resulting mechanical properties of metal nanowires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.