Abstract

Gecko feet consist of numerous micro/nano hierarchical hairs and exhibit a high adhesion onto various surfaces by van der Waals forces. The gecko, despite its mighty adhesion, can travel efficiently with a rapid adhesion switching due to the end of the hairs on the gecko feet are slanted in one direction. Herein, a shape memory polymer (SMP)-based switchable dry adhesive (SSA), inspired by gecko feet, having tremendous surface adaptability and adhesion switching capability, is reported. The SSA shows not only high adhesion to the various surfaces (≈332.8kPa) but also easy detachment (nearly 3.73kPa) due to the characteristic of SMP, which can reversibly recover from a deformed shape to its initial shape. On the basis of the novel adhesion switching property, it is suggested the SSA-applied advanced glass transfer system can lead to feasible application. This experiment confirms that an ultrathin and light glass film is transferred easily and sustainably, and it is believed that the SSA may be a breakthrough and a powerful alternative for not only conventional dry adhesives but also the next-level transfer systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call