Abstract

The solid particles are adsorbed at liquid–liquid interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the extreme roughness on the particle surface affects their adsorption properties. In our previous work, we discussed the adsorption behavior of the solid particles with microstructured surfaces using the so-called Wenzel model [Y. Nonomura et al., J. Phys. Chem. B 110 (2006) 13124]. In the present study, the wettability and the adsorbed position of the particles with extremely rough surfaces are studied based on the Cassie–Baxter model. We predict that the adsorbed position and the interfacial energy depend on the interfacial tensions between the solid and liquid phases, the radius of the particle, and the fraction of the particle surface area that is in contact with the external liquid phase. Interestingly, the initial state of the system governs whether the particle is adsorbed at the interface or not. The shape of the particle is also an important factor which governs the adsorbed position. The disk-shaped particle and the spherical particle which is partially covered with the extremely rough surface, i.e. Janus particle, are adsorbed at the liquid–liquid interface in an oriented state. We should consider not only the interfacial tensions, but also the surface structure and the particle shape to control the adsorption behavior of the particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.