Abstract

ABSTRACT Within the present study, novel chelating resins containing a layer loaded with N-methyl-D-glucamine functionalities were synthesized. The procedure involved impregnation of macroporous Amberlite XAD-4 adsorbent using mixture of vinylbenzyl chloride (VBC) and divinylbenzene (DVB) further subjected to free radical suspension polymerization. The so-obtained 1PTN and 2PTN adsorbents were characterized by expanded-gel or microporous structure of VBC-co-DVB layer, respectively. The both materials were used in desalination of geothermal water aimed to decrease levels of boron and arsenic. As a part of this, he research on boron and arsenic removal included batch adsorption and kinetic studies. The results have shown that the resin 1PTN showed maximum boron removal of 64% and arsenic removal of 18% from the geothermal water. The resin 2PTN exhibited competitive boron removal performance as compared to the commercial Diaion CRB 05 resin, reaching its efficiency by removing over 96% of boron. Also, the sample 2PTN outmatched Diaion CRB 05, removing 97% of arsenic and leading to decrease of its concentration to permissible level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.