Abstract

Bacterial urinary tract infections resulting from prolonged patient catheterization have become a major health problem. One of the major issues is bacterial resistance to antibiotic treatments due to biofilm formation inside the catheters, thus enhancing the search for alternative treatments. In the present study, a device containing a piezo element capable of transmitting low-frequency surface acoustic waves (SAW) onto the indwelling catheter was used. The SAW were able to eradicate biofilm-residing bacteria by >85% when applied simultaneously with an antibiotic in three clinically relevant species, viz. Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. Moreover, transcriptome analysis revealed that SAW can alter the transcription pattern of P. aeruginosa, suggesting that this signal can be specifically sensed by the bacterium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call