Abstract

We investigate the effects of high frequency strain on the depinning of magnetic domain walls in perpendicular anisotropy materials. Micron wide stripes of [Co(0.3 nm)/Pt(0.6 nm)]5 are patterned between a pair of identical inter-digital transducers that generate high frequency (114.8 MHz) standing surface acoustic waves. We use magneto-optical Kerr effect microscopy to characterize the thermally-assisted depinning of domain walls at defect sites within the strips. Our results show that the excitation of the domain walls with surface acoustic waves results in an increase in their depinning probabilities by approximately a factor of 10. Our data are consistent with a model in which the magnetoelastic anisotropies induced by the acoustic waves modulate the energy barriers that pin the domain walls. These results suggest an alternative route to domain wall depinning in thin films and nanostructures and are relevant to the development of racetrack memories, where domain wall pinning can result in reduced velocities and non-deterministic motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.