Abstract

In this study, we developed a novel and rapid method to generate in vitro three-dimensional (3D) multicellular tumor spheroids using a surface acoustic wave (SAW) device. A SAW device with single-phase unidirectional transducer electrodes (SPUTD) on lithium niobate substrate was fabricated using standing UV photolithography and wet-etching techniques. To generate spheroids, the SAW device was loaded with medium containing human breast carcinoma (BT474) cells, an oscillating electrical signal at resonant frequency was supplied to the SPUDT to generate acoustic radiation in the medium. Spheroids with uniform size and shape can be obtained using this method in less than 1 minute, and the size of the spheroids can be controlled through adjusting the seeding density. The resulting spheroids were used for further cultivation and were monitored using an optical microscope in real time. The viability and actin organization of the spheroids were assessed using live/dead viability staining and actin cytoskeleton staining, respectively. Compared to spheroids generated using the liquid overlay method, the SAW generated spheroids exhibited higher circularity and higher viability. The F-actin filaments of spheroids appear to aggregate compared to that of untreated cells, indicating that mature spheroids can be obtained using this method. This spheroid generating method can be useful for a variety of biological studies and clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.