Abstract

Motivated by experiments on dendritic actin networks exhibiting surface growth, we address the problem of the stability of this growth process. We choose as a simple, reference geometry a biaxially stressed half-space growing at its boundary. The actin network is modeled as a neo-Hookean material. A kinetic relation between growth velocity and a stress-dependent driving force for growth is utilized. The stability problem is formulated and results are discussed for different loading and boundary conditions, with and without surface tension. Connections are drawn with Biot’s 1963 surface instability threshold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.