Abstract

Bathymetry is a major factor in determining nearshore and surf zone wave transformation and currents, yet is often poorly known. This can lead to inaccuracy in numerical model predictions. Here bathymetry is estimated as an uncertain parameter in a data assimilation system, using the ensemble Kalman filter (EnKF). The system is tested by assimilating several remote sensing data products, which were collected in September 2010 as part of a field experiment at the U.S. Army Corps of Engineers Field Research Facility (FRF) in Duck, NC. The results show that by assimilating remote sensing data alone, nearshore bathymetry can be estimated with good accuracy, and nearshore forecasts (e.g., the prediction of a rip current) can be improved. This suggests an application where a nearshore forecasting model could be implemented using only remote sensing data, without the explicit need for in situ data collection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.