Abstract

This study evaluated ethylcellulose (EC) in two forms in preparation of sustained release theophylline microparticles using spray drying. Spray dried (SD) samples at different drug:polymer ratios were prepared using Surelease (SDaq) or organic solutions of ethylcellulose (SDor). Properties of particles (yield, particle morphology, size distribution and release profiles) were examined. Differential scanning calorimetry (DSC) and infrared spectroscopy (IR) studies were performed to track polymorphic changes and/or drug polymer interactions. SD samples were compressed and crushing strengths and release profiles were determined. The yields were in the range of 55–70%. The SD samples were nearly spherical with numerous fine particles attached to their surfaces. The SDor samples showed the smallest particle size. No polymorphism or drug–polymer interaction was observed. Uncompressed SDaq samples showed inadequate sustained release of drug compared to SDor samples. Surelease content did not affect drug release from SDaq samples. Tablets prepared from SDaq were softer and showed some plasticity, while those prepared from SDor exhibited higher crushing strengths. Tablets prepared from SDaq showed sustained release properties while the release of drug from compressed SDor samples were too slow. Overall Surelease was unable to sustain release of theophylline from SDaq microparticles, however, in compacted form showed more appropriate drug release than compacted SDor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.