Abstract

Variable selection in ultra-high dimensional data sets is an increasingly prevalent issue with the readily available data arising from, for example, genome-wide associations studies or gene expression data. When the dimension of the feature space is exponentially larger than the sample size, it is desirable to screen out unimportant predictors in order to bring the dimension down to a moderate scale. In this paper we consider the case when observations of the predictors are missing at random. We propose performing screening using the marginal linear correlation coefficient between each predictor and the response variable accounting for the missing data using maximum likelihood estimation. This method is shown to have the sure screening property. Moreover, a novel method of screening that uses additional predictors when estimating the correlation coefficient is proposed. Simulations show that simply performing screening using pairwise complete observations is out-performed by both the proposed methods and is not recommended. Finally, the proposed methods are applied to a gene expression study on prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.