Abstract

In [2] Dumont stated several conjectures about some symmetric polynomial sequences which are the refinements of the Genocchi numbers. In this paper we shall prove all of his conjectures. We first show that some special cases of his main conjecture can be readily derived from a result of Wall and then give a complete proof of this conjecture by computing some Hankel determinants. Finally, we present a new symmetric model for the Dumont-Foata polynomials in terms of Motzkin paths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.