Abstract
We study the stable norm on the first homology of a Riemannian polyhedron. In the one-dimensional case (metric graphs), the geometry of the unit ball of this norm is completely described by the combinatorial structure of the graph. For a smooth manifold of dimension ≥3 and using polyhedral techniques, we show that a large class of polytopes appears as unit ball of the stable norm associated to some metric conformal to a given one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.