Abstract

Both Bayesian and maximum likelihood methods are efficient for the estimation of regression coefficients of various Tobit regression models (see. e.g. Chib, 1992; Greene, 1990; Lee and Choi, 2013); however, some researchers recognized that the maximum likelihood method tends to underestimate the disturbance variance, which has implications for the estimation of marginal effects and the asymptotic standard error of estimates. The underestimation of the maximum likelihood estimate in a seemingly unrelated Tobit regression model is examined. A Bayesian method based on an objective noninformative prior is shown to provide proper estimates of the disturbance variance as well as other regression parameters

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.