Abstract

AbstractThe Pozanti-Karsanti Ophiolite Complex is situated in the eastern Tauride Belt and represents a remnant of the Mesozoic Neotethyan Ocean. It consists of three distinct nappes: (1) an ophiolitic mélange; (2) a metamorphic sole; and (3) ophiolitic rocks. The oceanic lithosphere section of the Pozanti-Karsanti Ophiolite comprises mantle tectonites, ultramafic-mafic cumulates, isotropic gabbros, sheeted dykes and basaltic volcanic rocks. These units are cut by isolated microgabbro-diabase dykes at all structural levels. New results are presented on the whole-rock and mineral chemistry of the gabbroic cumulates. Well-layered, low-Ti gabbroic cumulates, showing adcumulate to mesocumulate textures, are represented exclusively by gabbronorites. The mineral chemistry of gabbronorites from the Pozanti-Karsanti Ophiolite indicates that these cumulate rocks have been produced by the low-pressure crystal fractionation of basaltic liquid. Magnesium numbers (Mg-numbers) of clinopyroxene, orthopyroxene and amphibole range from 89 to 73, 80–66 and 80–72, respectively. Plagioclase compositions range from An94 to An84. The coexistence of calcic plagioclase, magnesian clinopyroxene and orthopyroxene indicates that the cumulate gabbronorites from the Pozanti-Karsanti Ophiolite were formed in an arc environment. The covariation of Al2O3 and Mg-numbers of both clinopyroxene and orthopyroxene show features typical of low-pressure igneous intrusions such as the Skaergaard and Tonsina Complexes, but differ from the high-pressure ultramafic cumulates found in the same arc. The cumulate gabbronorites probably represent shallower levels in the arc which were subsequently juxtaposed against deeper level ultramafic cumulates either during accretion or later faulting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call