Abstract

We report molecular interaction-driven self-assembly of supramolecularly engineered amphiphilic macromolecules (SEAM) containing a single supramolecular structure-directing unit (SSDU) consisting of an H-bonding group connected to a naphthalene diimide chromophore. Two such SEAMs, P1-50 and P2-50, having the identical chemical structure and hydrophobic/hydrophilic balance, exhibit distinct self-assembled structures (polymersome and cylindrical micelle, respectively) due to a difference in the H-bonding group (hydrazide or amide, respectively) of the single SSDU. When mixed together, P1-50 and P2-50 adopted self-sorted assembly. For either series of polymers, variation in the hydrophobic/hydrophilic balance does not alter the morphology reconfirming that self-assembly is primarily driven by directional molecular interaction which is capable of overruling the existing norms in packing parameter-dependent morphology control in an immiscibility-driven block copolymer assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.