Abstract

The performance of large-area molecular diodes can in rare cases approach the lower limit of commercial semiconductor devices but predictive structure-property design remains difficult as the rectification ratio (R) achieved by self-assembled monolayer (SAM) based diodes depends on several intertwined parameters. This paper describes a systematic approach to achieve high rectification in bisferrocenyl-based molecular diodes, HSCnFc-CC-Fc (n = 9-15) immobilised on metal surfaces (Ag, Au and Pt). Experiments supported by molecular dynamics simulations show that the molecular length and bottom electrode influence the SAM packing, which affects the breakdown voltage (VBD), the associated maximum R (Rmax), and the bias at which the Rmax is achieved (Vsat,R). From the electrical characterisation of the most stable Pt-SCnFc-CC-Fc//GaOx/EGaIn junctions, we found that VBD, Vsat,R, and Rmax all scale linearly with the spacer length of Cn, and that Rmax for all the SAMs consistently exceeds the "Landauer limit" of 103. Our data shows that the robust switching of M-SCnFc-CC-Fc//GaOx/EGaIn junctions is the result of the combined optimisation of parameters involving the molecular structure, the type of metal substrate, and the applied operating conditions (bias window), to create stable and high-performance junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.