Abstract

AbstractPoor control on the exfoliation of covalent organic frameworks (COFs) remains a disadvantage for their application as two‐dimensional nanosheets. An equally important problem is the reversible control at the available surface charges on COFs. Herein, a strategy for the reversible exfoliation, re‐stacking, and surface‐charge control of a propidium iodide based ionic covalent organic framework, PI‐TFP, using cucurbit[7]uril (CB[7]) induced molecular recognition, is reported. The surface charge on PI‐TFP facilitates its initial self‐exfoliation. However, complexation with CB[7] resulted in re‐stacking with concomitant decrease in zeta potential from +28±3.0 to +0.004±0.003 mV. Addition of 1‐adamantylamine hydrochloride (AD) facilitates decomplexation of PI‐TFP from CB[7], resulting in exfoliation and an increase in zeta potential to +24±3.0 mV. Such control on the exfoliation, re‐stacking, and the associated regulation of the surface charge in PI‐TFP was exploited for controlling bacterial growth. Thus, the activity of E. coli and S. aureus bacteria obtained with the self‐exfoliated PI‐TFP could be reversibly controlled by the CB[7]/AD pair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.