Abstract

Prochlorothrix hollandica is a newly described photosynthetic prokaryote, which contains chlorophylls a and b. In this paper we report the results of freeze fracture and freeze etch studies of the organization of the photosynthetic thylakoid membranes of Prochlorothrix. These membranes exhibit four distinct fracture faces in freeze fractured preparations, two of which are derived from membrane splitting in stacked regions of the thylakoid membrane, and two of which are derived from nonstacked regions. The existence of these four faces confirms that the thylakoid membranes of Prochlorothrix, like those of green plants, display true membrane stacking and have different internal composition in stacked and non-stacked regions, a phenomenon that has been given the name lateral heterogeneity. The general details of these fracture faces are similar to those of green plants, although the intramembrane particles of Prochlorothrix are generally smaller than those of green plants by as much as 30%. Freeze etched membrane surfaces have also been studied, and the results of these studies confirm freeze fracture observations. The outer surface of the thylakoid membrane displays both small (less than 8.0 nm) and large (greater than 10.0 nm) particles. The inner surface of the thylakoid membrane is covered with tetrameric particles, which are concentrated into stacked membrane regions, a situation that is similar to the inner surfaces of the thylakoid membranes of green plants. These tetramers have never before been reported in a prokaryote. The photosynthetic membranes of Prochlorothrix therefore represent a prokaryotic system that is remarkably similar, in structural terms, to the photosynthetic membranes found in chloroplasts of green plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.