Abstract

Aggregationfactors are the molecules responsible for species-specific cell adhesion in sponges. Here, we present the structure of the aggregation factor from the marine sponge Microciona prolifera, which constitutes the first description of a circular proteoglycan. We have analyzed chemically dissociated and enzymatically digested aggregation factor with atomic force microscopy, agarose gel electrophoresis, and Western blots using antibodies against the protein and carbohydrate moieties. Twenty units from each of two N-glycosylated proteins, MAFp3 and MAFp4, form the central ring and radiating arms, respectively, stabilized by a hyaluronidase-sensitive component. MAFp3 carries a 200-kDa glycan involved in homologous self-interactions between aggregation factor molecules, whereas MAFp4 carries a 6-kDa glycan that binds cell surface receptors. A 68-kDa lectin found in cell membranes of several sponge species binds the aggregation factor and its protein-free glycans, as well as chondroitin sulfate and hyaluronan. Here, we show that despite their lack of clear sequence homologies with other known proteoglycan structures, the protein and carbohydrate components of sponge aggregation factors assemble to form a supramolecular complex remarkably similar to classical proteoglycans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.