Abstract

Ferroelectric (FE)‐antiferromagnetic (AFM) multiferroic materials have sparked growing interest due to their huge possibilities in energy‐saving, photoelectric devices, nonvolatile storage, and switches. However, realizing FE‐AFM properties in a hybrid molecular material is difficult because ferroelectric and magnetic orders are commonly mutually exclusive. Here, we report an FE‐AFM multiferroic semiconductor [NH4(18‐crown‐6)]2[Mn(SCN)4] (NCMS) by supramolecular assembly approach via molecular rotor synthon [NH4(18‐crown‐6)] and inorganic magnetic module [Mn(SCN)4]. Interestingly, NCMS shows good ferroelectricity with a spontaneous polarization (Ps) of 5.94 μC cm−2 higher than most crown‐ether‐based ferroelectrics. Especially, the realization of antiferromagnetism is for the first time in the crown ether hybrid perovskite ferroic systems. Additionally, semiconductor NCMS displays an X‐ray radiation detection response with a large photo/dark current on‐off ratio (197). Our study not only gives a deep insight into understanding multiferroic properties but also provides a novel and efficient approach to realizing high‐performance hybrid multiferroic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.