Abstract

AbstractDNA‐based materials have attracted interest due to the tunable structure and encoded biological functionality of nucleic acids. A simple and general approach to synthesize DNA‐based materials with fine control over morphology and bioactivity is important to expand their applications. Here, we report the synthesis of DNA‐based particles via the supramolecular assembly of tannic acid (TA) and DNA. Uniform particles with different morphologies are obtained using a variety of DNA building blocks. The particles enable the co‐delivery of cytosine‐guanine adjuvant sequences and the antigen ovalbumin in model cells. Intramuscular injection of the particles in mice induces antigen‐specific antibody production and T cell responses with no apparent toxicity. Protein expression in cells is shown using capsules assembled from TA and plasmid DNA. This work highlights the potential of TA as a universal material for directing the supramolecular assembly of DNA into gene and vaccine delivery platforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call