Abstract

Low-temperature adhesion is ubiquitous in daily life and industry. However, most supramolecular adhesives are thermoplastic materials that require heating during the adhesion. Herein, a supramolecular approach is used to construct unique pressure-sensitive adhesives (PSAs) that can be directly operated at low temperatures (-60 °C). Supramolecular polymerization between phytic acid (PA) and water (H) endows poly(PA-H)s with excellent mechanical properties and low temperature adhesion capacity. Poly(PA-H)s can easily be processed into PSA tapes, pastes, and particles. Poly(PA-H)s were directly adhered to various surfaces by pressing at low temperatures (0 to -60 °C). No heating or high-temperature-induced solid-liquid transition was required for the low-temperature adhesion of poly(PA-H)s. With the help of structural water units in supramolecular polymers, poly(PA-H)s showed strong, stable, and organic solvent resistant adhesion performances at low temperatures, with adhesion strength of up to 3.61 MPa at -60 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call