Abstract

Oral immunization is a promising strategy for preventing and treating gastrointestinal (GI) infections and diseases, as it allows for direct access to the disease site. To elicit immune responses within the GI tract, however, there are many obstacles that oral vaccines must surmount, including proteolytic degradation and thick mucus barriers. Here, we employed a modular self-assembling peptide nanofiber platform to facilitate oral immunization against both peptide and small molecule epitopes. Synthesizing nanofibers with d-amino acids rendered them resistant to proteases in vitro, whereas l-amino acid nanofibers were rapidly degraded. Additionally, the inclusion of peptide sequences rich in proline, alanine, and serine (PAS), increased nanofiber muco-penetration, and accelerated nanofiber transport through the GI tract. Oral immunization with PASylated nanofibers and mucosal adjuvant generated local and systemic immune responses to a peptide epitope but only for l-amino acid nanofibers. Further, we were able to apply this design to also enable oral immunization against a small molecule epitope and illustrated the therapeutic and prophylactic effectiveness of these immunizations in mouse models of colitis. These findings demonstrate that supramolecular peptide self-assemblies have promise as oral vaccines and immunotherapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call