Abstract

The reaction of [PtMe2(6-dppd)], 1, where 6-dppd is a 1,4-bis(2-pyridyl)pyridazine derivative, with bromoalkanes BrCH2R, having a hydrogen-bond donor group R, gave the corresponding chiral products of trans oxidative addition [PtBrMe2(CH2R)(6-dppd)], 2a, R = CO2H; 3, R = 4-C6H4CO2H; 4, R = 4-C6H4CH2CO2H; 7, R = 2-C6H4CH2OH; 8, R = 4-C6H4B(OH)2; 9, R = 3-C6H4B(OH)2; and 10, R = 2-C6H4B(OH)2. Complex 2a was formed in equilibrium with two isomers formed by cis oxidative addition, while the reaction of 1 with BrCH2CH2CO2H gave mostly [PtBrMe(6-dppd)], 6. The supramolecular chemistry was studied by structure determination of six of the platinum(IV) complexes, with emphasis on the preference of the hydrogen bond acceptor (O, pyridyl N, or Br atom), formation of monomer, dimer, or polymer, and self-recognition or self-discrimination in self-assembly. Complex 7 formed a monomer with the OH···N hydrogen bond, and complexes 2a and 10 formed racemic dimers by complementary hydrogen bonding with self-discrimination between CO2H or B(OH)2 groups, respectively. Complexes 3, 4, and 9 formed polymers by intermolecular hydrogen bonding with self-recognition, with 4 containing OH···N and 3 and 9 containing OH···Br hydrogen bonds. It is concluded that there is no clear preference for the hydrogen bond acceptor group, and that the observed product depends also on the orientation of the hydrogen bond donor group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.