Abstract

The present study deals with the crystal structures of four organic salts, namely, trimethoprim benzene sulfonate monohydrate 1, trimethoprim sulfanilate monohydrate 2, trimethoprim p-toluene sulfonate 3 and trimethoprim 3-carboxy-4-hydroxybenzene sulfonate dihydrate 4. Trimethoprim (TMP) is protonated at one of the ring nitrogens of the pyrimidine ring. Generally, in the TMP carboxylate complexes, the protonated pyrimidine ring is hydrogen-bonded to the carboxylate group forming a cyclic fork-like hydrogen-bonded bimolecular motif. In structures 1–3, the sulfonate group plays the role of the carboxylate anion. In compounds 1 and 2, there is no pairing of the pyrimidine rings because the pairing sites are blocked by water molecules donating hydrogen to the unprotonated ring nitrogen. Two of the cyclic motifs are bridged by the water molecule donating two hydrogen atoms, leading to a hydrogen-bonded supramolecular chain. This chain pairs with another chain running in the opposite direction. These two chains are cross-linked by O–H⋯O hydrogen bonds. In compound 2, two of the hydrogen atoms of the amino group of the sulfanilate bridge two methoxy oxygen of the two TMP cations via N–H⋯O hydrogen bonds resulting in a supramolecular zig-zag chain. In compound 3, two inversion related cyclic motifs are paired through a pair of N–H⋯N hydrogen bonds involving the 4-amino group and the N3 atom of the pyrimidine ring. In addition to the pairing, one of the sulfonate oxygen atoms bridges the 2-amino and 4-amino groups on either side of the paired bases, resulting in a self-complementary DADA (D represents the hydrogen bond donor and A represents hydrogen bond acceptor) array of quadruple hydrogen bonding patterns. In compound 4, one of the water molecules forms a hydrogen-bonded dimer with the inversion-related water molecule. The 3-carboxy-4-hydroxybenzene sulfonate moiety self-assembles into a supramolecular chain along the c axis through O–H⋯O hydrogen bonds. Two such oppositely running supramolecular chains are connected by dimeric and monomeric water molecules. The variation of supramolecular organization via hydrogen bonding in the four different trimethoprim sulfonate salts has been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.