Abstract

In cancer radiotherapy, the lack of fixed DNAdamage by oxygen in hypoxic microenvironment of solid tumors often leads to severe radioresistance. Nitric oxide (NO) is a potent radiosensitizer that acts in two ways. It can directly react with the radical DNA thus fixing the damage. It also normalizes the abnormal tumor vessels, thereby increasing blood perfusion and oxygen supply. To achieve these functions, the dosage and duration of NO treatment need to be carefully controlled, otherwise it will lead to the exact opposite outcomes. However, a delivery method that fulfills both requirements is still lacking. A NO depot is designed for the control of NO releasing both over quantity and duration for hypoxic tumor vessel normalization and radiosensitization. In B16-tumor-bearing mice, the depot can provide low dosage NO continuously and release large amount of NO immediately before irradiation for a short period of time. These two modes of treatment work in synergy to reverse the radioresistance of B16tumors more efficiently than releasing at single dosage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call