Abstract

ABSTRACTT‐shaped coil–rod–coil oligomers, consisting of a dibenzo[a,c]phenazine unit and phenyl groups linked together with acetylenyl bonds at the 2,7‐position of dibenzo[a,c]phenazine as a rigid segment have been synthesized. The coil segments of these new molecules composed of poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO) incorporating lateral methyl groups between the rod and coil segment and two flexible alkyl groups connecting with the rigid segment at the 4,6‐position of dibenzo[a,c]phenazine, respectively. The experimental results reveal that the length of the flexible PEO coil chain influence construction of various supra‐nanostructures from lamellar structure to rectangular columnar structure. It is also shown that introduction of different length of alkyl side chain groups in the backbone of the T‐shaped molecules affect the self‐organization behavior to form hexagonal perforate layer or oblique columnar structures. In addition, lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self‐assembling behavior in the crystalline phase. T‐shaped molecules containing a lateral methyl group at the surface of rod and PEO coil segments, self‐assemble into 3D body‐centered tetragonal structures in the crystalline phase, while molecules without a lateral methyl group based on PEO coil chain self‐organize into 2D oblique columnar crystalline structures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 5021–5028

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call