Abstract

Single-chain nanoparticles can be obtained via single-chain folding assisted by intramolecular crosslinking reversibly or irreversibly. Single-chain folding is also an efficient route to simulate biomacromolecules. In present study, poly(N-hydroxyethylacrylamide-co-4'-(propoxy urethane ethyl acrylate)-2,2':6',2''-terpyridine) (P(HEAm-co-EMA-Tpy)) is synthesized via reversible addition fragmentation chain transfer polymerization. Single-chain folding and intramolecular crosslinking of P(HEAm-co-EMA-Tpy) are achieved via metal coordination chemistry. The intramolecular interaction is characterized on ultraviolet/visible spectrophotometer (UV-vis spectroscopy), proton nuclear magnetic resonance ((1)H NMR), and differential scanning calorimetry (DSC). The supramolecular crosslinking mediated by Fe(2+) plays an important role in the intramolecular collapsing of the single-chain and the formation of the nanoparticles. The size and morphology of the nanoparticles can be controlled reversibly via metal coordination chemistry, which can be characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic force microscope (AFM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.