Abstract

Chemotherapy combined with photodynamic therapy has emerged as a promising strategy for cancer treatment. However, simultaneously delivering chemotherapeutic drugs and photosensitizers and precisely adjusting the ratio of the two components as needed remains a challengeable task. Herein, novel supramolecular nanoparticles (donated as BODIPY-CPT-NPs) for chemo-photodynamic combination cancer therapy are constructed from a glutathione-responsive camptothecin-based prodrug, BODIPY photosensitizer, and dimacrocyclic host molecule through orthogonal host-guest recognitions and co-assembly. With this strategy, the ratio of prodrugs and photosensitizers in nanoparticles can be easily and precisely controlled as needed. Benefiting from the strong host-guest interactions and stable self-assembly, the nanoparticles exhibit excellent stability and photobleaching resistance. Furthermore, camptothecin can be released from nanoparticles for chemotherapy in the presence of reduction agent and single oxygen can be efficiently generated for PDT with light irradiation. The combined effects of the BODIPY-CPT-NPs have been verified in CT26 and HeLa cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call