Abstract

Nanogels that are assembled by supramolecular interactions as compared to covalent crosslinked nanogels, exhibit new functionalities with potential for easy processability, recycling and self-healing due to the nature of dynamic and reversible non-covalent interactions. Here we design a supramolecular polymer nanogel that utilize host–guest interactions between the groups pillar [5] arene and alkyl chains on hyperbranched polyglycerol backbone as crosslinking agents for a new dermal drug delivery system. The anti-inflammatory drug Dexamethasone (Dexa) can be efficiently loaded into the nanogels and released from the assemblies. Besides, the supramolecular polymer nanogels exhibit better drug loading capacity and skin penetration enhancement than the individual host polymer and guest polymer. In vitro skin permeation studies show that supramolecular polymer nanogels can improve the Nile red penetration through the skin by up to 9 fold, compared to the individual polymers or a conventional cream formulation on a barrier deficient skin model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call