Abstract

Despite the tremendous breakthrough of immunotherapy, the low response rate and resistance of immune checkpoint inhibitors (ICIs) toward solid tumors occur frequently. A highly hypoxic tumor microenvironment (TME) provides tumor cells with high concentrations of HIF-1α and polyamines to evade immune cell destruction. Reprogramming of an immunogenic TME has exhibited a brilliant future to boost immunotherapeutic performances. Herein, a supramolecular nanomedicine (TAPP) is developed on the basis of host-guest molecular recognition and metal coordination, showing the capability to remodel the immunosuppressive TME. Tamoxifen (Tmx) and Fe3+ are encapsulated into TAPP to achieve the combination of chemotherapy and chemodynamic therapy (CDT). Tmx directly downregulates HIF-1α, and a pillar[5]arene-based macrocyclic host successfully eliminates polyamines in tumors. Enhanced immunogenic cell death is achieved by Tmx and Fe3+, and the therapeutic efficacy is further synergized by immune checkpoint blockade (ICB) therapy. This supramolecular reprogramming modality encourages cytotoxic T lymphocyte infiltration, achieving pre-eminent immune response and long-term tumor suppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.