Abstract

In the field of biomedicine, tissue bio-adhesives require the use of polymer materials with integrated functions to meet changing practical applications. However, the currently available tissue glues cannot balance mechanical properties and biocompatibility. Inspired by the conversion of lipoic acid from small molecular biological sources into high-performance supramolecular polymeric materials, thioctic acid (TA) was modified and polyethylene glycol diacrylate (PEGDA) was introduced. Successfully constructed a dry gel with antibacterial effect and promote infection for wound regeneration. The prepared modified lipoic acid is mixed with PEGDA, melted under mild heating and self-assembled, and then directly extruded on both sides of the wound. It quickly cures at 37 °C and firmly adheres to both sides of the wound. The material exhibits good processability and rapid self-healing ability due to the cross-linked structure of the internal disulfide bonds and thioether bonds. In addition, the characteristics of TA make the prepared xerogels have good tissue adhesion and good antibacterial properties. This work proposes an innovative material with mechanical strength and biocompatible tissue glue, which provides broad prospects for application in wound treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call