Abstract

2,2'-Bipyrazine (2,2'-bpz) reacts with cis-(NH(3))(2)Pt(II) in water to give a variety of products, several of which were isolated and characterized by X-ray analysis: cis-[Pt(NH(3))(2)(2,2'-bpz-N4)(2)](NO(3))(2)·3H(2)O (1), [{cis-Pt(NH(3))(2)(2,2'-bpz-N4,N4')}(3)]-(PF(6))(5)NO(3)·7H(2)O (2a), [{cis-Pt(NH(3))(2)(2,2'-bpz-N4,N4')}(3)](BF(4))(2)-(SiF(6))(2)·15H(2)O (2b), and [{cis-Pt(NH(3))(2)(2,2'-bpz-N4,N4')}(4)]-(SO(4))(4)·22H(2)O (3). In 1, 2b, and 3 the 2,2'-bpz ligands adopt approximately C(2h) symmetries, hence the two pyrazine halves are in trans orientation, whereas in 2a all three 2,2'-bpz bridges are approximately C(2v) symmetric, with the pyrazine halves cis to each other. The topologies of the two triangular complexes 2a and 2b are consequently distinctly different, but nevertheless both cations act as hosts for anions. In 2a a PF(6)(-) and a NO(3)(-) anion are associated simultaneously with the +6 cation, whereas in 2b it is a BF(4)(-) anion and a water molecule, which are trapped in its cavity. There is no anion inclusion in case of the metallasquare 3. In principle, 3 can exist in a large number of stereoisomers, depending on the rotational states of the bridging 2,2'-bpz ligands. Isolation of a single rotamer form of 3 with C(2h) symmetric 2,2'-bpz ligands and an overall meso form is proposed to be a consequence of a highly efficient self-assembly process that starts from the precursor 1 and reaction with two cis-(NH(3))(2)Pt(II) units. This process leads to the isolated rotamer of 3 regardless of whether two cations 1 in head-head form react with two cis-(NH(3))(2)Pt(II), or whether the Δ enantiomer of the chiral head-tail form of 1 combines with its Λ enantiomer through two cis-(NH(3))(2)Pt(II) entities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.