Abstract

Supramolecular interactions between β-lapachone (β-lap) and cyclodextrins (CDs) were investigated by isothermal titration calorimetry. The most favorable host: guest interaction was characterized using X-ray powder diffraction (XRD), differential scanning calorimetry and thermogravimetry (DSC/TG), spectroscopy (FT-IR), spectroscopy (2D ROESY) nuclear magnetic resonance (NMR), and molecular modeling. Phase solubility diagrams showed β-, HP-β-, SBE-β-, γ-, and HP-γ-CDs at 1.5% (w/w) allowed an increase in apparent solubility of β-lap with enhancement factors of 12.0, 10.1, 11.8, 2.4, and 2.2, respectively. β-lap has a weak interaction with γ- and HP-γ-CDs and tends to interact more favorably with β-CD and its derivatives, especially SBE-β-CD (K=4160M-1 ; ΔG=-20.66kJ·mol-1 ). Thermodynamic analysis suggests a hydrophobic interaction associated with the displacement of water from the cavity of the CD by the β-lap. In addition, van der Waals forces and hydrogen bonds were responsible for the formation of complexes. Taken together, the results showed intermolecular interactions between β-lap and SBE-β-CD, thereby confirming the formation of the inclusion complex. Molecular docking results showed 2 main orientations in which the interaction of benzene moiety at the wider rim of the SBE-β-CD is the most stable (average docking energy of -7.0kcal/mol). In conclusion, β-lap:SBE-β-CD is proposed as an approach for use in drug delivery systems in cancer research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.