Abstract

Recently, we polymerized a block copolymer that was constructed of side-chain crystalline monomer and a solvent-compatible monomer, which we referred to as a side-chain crystalline block copolymer (SCCBC). This SCCBC has a specific melting point. We found that this SCCBC was adsorbed onto polyethylene (PE) crystal by via supramolecular interaction. In addition, through this supramolecular interaction, the SCCBC acts as a dispersant for a concentrated PE particle dispersion, and this dispersion can be considered a Thermal Rheological Fluid. By using this novel supramolecular interaction, we can easily modify the surface properties of high crystalline polymers (PE, polytetrafluoroethylene (PTFE), etc.), which have been thought to be inert. Especially, we can modify the inner surface properties of porous membranes without using physical methods (such as UV irradiation or plasma irradiation). Furthermore, these modified surface properties can revert to those in the non-modified state under changes in temperature. It may possible to develop intelligent materials with use of this supramolecular interaction in the near future. [doi:10.2320/matertrans.MF201318] (Received March 18, 2013; Accepted April 25, 2013; Published May 31, 2013)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.