Abstract

Mesenchymal stem cells (MSCs) have been widely investigated to repair injured cartilage tissues for the treatment of arthritis. Despite these great efforts, the difficulty in the spatiotemporal control of delivered cells has limited the further clinical development with rapid clearance. Here, we developed injectable hyaluronate (HA) hydrogels to encapsulate MSCs for controlled cartilage tissue regeneration based on the supramolecular chemistry between β-cyclodextrin-modified HA (HA-CD) and adamantane (Ad)-modified HA (HA-Ad). Supramolecular HA hydrogels exhibited remarkable mechanical characteristics such as shear thinning and self-healing with a high cell viability of encapsulated MSCs. The spatiotemporally controlled delivery of MSCs from the supramolecular HA hydrogels resulted in the statistically significant chondrogenic differentiation and extracellular matrix deposition in vitro and in vivo. We could confirm the notable cartilage tissue regeneration in cartilage defect model rats after treatment with supramolecular HA hydrogels encapsulating MSCs for 28 days. Taken together, supramolecular HA hydrogels would be successfully harnessed as an injectable delivery system of MSCs for cartilage tissue regeneration and other tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.