Abstract
Amyloid fibrils are insoluble protein aggregates comprised of highly ordered β-sheet structures and they are involved in the pathology of amyloidoses, such as Alzheimer's disease. A supramolecular strategy is presented for inhibiting amyloid fibrillation by using cucurbit[7]uril (CB[7]). CB[7] prevents the fibrillation of insulin and β-amyloid by capturing phenylalanine (Phe) residues, which are crucial to the hydrophobic interactions formed during amyloid fibrillation. These results suggest that the Phe-specific binding of CB[7] can modulate the intermolecular interaction of amyloid proteins and prevent the transition from monomeric to multimeric states. CB[7] thus has potential for the development of a therapeutic strategy for amyloidosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.