Abstract

In this work, we developed a simple, novel method for constructing gold nanocomposite supramolecular hybrid hydrogels for drug delivery, in which gold nanocrystals were utilized as building blocks. First, methoxypoly(ethylene glycol) thiol (mPEG-SH, molecular weight (MW)=5 K) capped gold nanocrystals (nanospheres and nanorods) were prepared via a facile one-step ligand-exchange procedure. Then, the homogeneous supramolecular hybrid hydrogels were formed, after adding α-cyclodextrin (α-CD) into PEG-modified gold nanocrystal solutions, due to the host-guest inclusion. Both gold nanoparticles and inclusion complexes formed between α-CD and PEG chain provided the supra-cross-links, which are beneficial to the gelation formation. The resulting hybrid hydrogels were fully characterized by a combination of techniques including X-ray diffraction, rheology studies, and scanning electron microscopy. Meanwhile, the hybrid hydrogel systems demonstrated unique reversible gel-sol transition properties at a certain temperature caused by the temperature-responsive reversible supramolecular assembly. The drug delivery applications of such hybrid hydrogels were further investigated in which doxorubicin was selected as a model drug for in vitro release, cytotoxicity, and intracellular release studies. We believe that the development of such hybrid hydrogels will provide new and therapeutically useful means for medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.