Abstract
Drug delivery systems based on stimuli-responsive porous polymer films (PPFs) have been extensively investigated because of their many advantages. However, the ability to adjust the drug release from PPFs is not always perfect, and at times, it cannot satisfy real-world requirements. In this paper, supramolecular host-guest interactions were harnessed to overcome the difficulties associated with adjustable release from these systems by incorporating host molecules into the pore walls of thermoresponsive PPFs. β-Cyclodextrin-functionalized porous amphiphilic block copolymer films (β-CD-PBCPFs) with controllable pore parameters, high homogeneity, and large areas were prepared by combining the self-assembly and breath-figure methods. Drug-loaded β-CD-PBCPFs displayed thermoresponsive release behavior, which could be tuned by increasing the β-CD content in phosphate-buffered saline. The release was governed by the host-guest interactions of the β-CD moieties and drug molecules. The concept of host-guest interaction-enhanced adjustable release could be applied to different drug molecules, such as doxorubicin and metronidazole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.